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Abstract

A theoretical method is developed to investigate vibration characteristics of initially stressed functionally
graded rectangular plates made up of metal and ceramic in thermal environment. The temperature is
assumed to be constant in the plane of the plate and to vary in the thickness direction only. Two types of
thermal condition are considered. The first type is that one value of the temperature is imposed on the
upper surface and the other (or same) value on the lower surface. The second is that the heat flows from the
upper surface to the lower one held at a prescribed temperature. Material properties are assumed to be
temperature dependent, and vary continuously through the thickness according to a power law distribution
in terms of the volume fraction of the constituents. The third-order shear deformation plate theory to
account for rotary inertia and transverse shear strains is adopted to formulate the theoretical model. The
Rayleigh–Ritz procedure is applied to obtain the frequency equation. The analysis is based on an expansion
of the displacements in the double Fourier series that satisfy the boundary conditions. The effect of material
compositions, plate geometry, and temperature fields on the vibration characteristics is examined. The
present theoretical results are verified by comparing with those in literature.
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1. Introduction

Functionally graded materials (FGMs) are composite materials intentionally designed so that
they possess desirable properties for specific applications, especially for aircrafts, space vehicles
and other engineering structures under high-temperature environment. FGMs are heterogeneous
composite materials, in which the material properties vary continuously from one interface to the
other. Those are achieved by gradually varying volume fraction of constituent materials. The
advantage of using these materials is that they can survive the high thermal gradient environment,
while maintaining their structural integrity. FGMs were initially designed as thermal barrier
materials for aerospace structural applications and fusion reactors. Now they are developed for
the general use as structural components in high-temperature environment.

Typically, an FGM is made of a ceramic and a metal for the purpose of thermal protection
against large temperature gradients. The ceramic material provides the high-temperature
resistance due to its low thermal conductivity, while the ductile metal constituent prevents
fracture due to its greater toughness. Many studies for thermal stress, thermal bending, and
vibration of functionally graded plates are available in the literatures. Fuchiyama and Noda [1]
analyzed the transient heat conduction and the thermal stress by FEM. In this work, the problem
was restricted to plane strain problem and the plates were layered with homogeneous layers, that
is, the change of material properties was varied in steps with the uniform homogenized material in
each sub-layer. Praveen and Reddy [2] conducted the nonlinear transient thermoelastic analysis of
functionally graded ceramic–metal plates using FEM. However, they were not considered the
change of material properties due to temperature distribution in analysis. Loy et al. [3] presented
the natural frequency of FGM cylindrical shells using theoretical method, but did not account for
the effect of temperature. Becker et al. [4] investigated the thermal residual stress in FGMs, where
temperature was varied only axially but material properties were constant regardless of
temperature. Pradhan et al. [5] studied the vibration characteristics of FGM cylindrical shells
with various boundary conditions. Ng et al. [6,7] presented the dynamic stability analysis of FGM
plates and cylindrical shells under harmonic in-plane loading. Almajid et al. [8] applied the
classical lamination theory to predict the out-of-plane displacement and stress field of FGM with
piezoelectric layer. Yang and Shen [9] deal with the dynamic response of initially stressed FGM
rectangular thin plates. Reddy and Cheng [10] investigated the free vibration of a spherical
shallow shell using various shear deformation theory. The thermal effect was not considered in
Refs. [5–10]. Woo and Meguid [11] provided an analytic solution for the coupled large deflection
of FGM plates and shallow shells made of temperature independent materials under transverse
mechanical loads and a temperature field. Shen [12] employed a mixed Galerkin-perturbation
technique to analyze the nonlinear bending of FGM plates subjected to a transverse load and in
uniform thermal environments. Cho and Ha [13] conducted volume fraction optimizations for
minimizing the thermal stress of FGMs in a constant thermal distribution.In this study, the
material properties were temperature independent and an FGM was divided into several uniform
homogenized layers. Yang and Shen [14] analyzed the vibration characteristics and transient
response of shear-deformable FGM plates made of temperature dependent materials in thermal
environments. Also, they [15] investigated free vibration and dynamic instability of FGM
cylindrical panels subjected to combined static and periodic axial forces and in thermal
environment. However, they considered only uniform temperature rise through the thickness.
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Reddy and Cheng [16] studied the harmonic vibration problem of functionally graded plates by
means of a three-dimensional asymptotic theory formulated in terms of transfer matrix.

Many of the above-mentioned papers deal with temperature-independent materials. Some of
them considered temperature dependent materials in a constant temperature field. In many cases,
the temperature varies through the thickness direction if a heat flows from one surface to the other
surface. In this paper, the analytical solution is provided for the vibration characteristics of FGM
plates under temperature field. The temperature is assumed to be constant in the plane of the
plate. The variation of temperature is assumed to occur in the thickness direction only. Two types
of thermal condition are considered. The first type is that one value of the temperature is imposed
on the upper surface and the other (or same) value on the lower surface. The second is that a heat
flows from the upper surface to the lower one held at a prescribed temperature. Material
properties are assumed to be temperature dependent, and vary continuously through the thickness
according to a power law distribution in terms of the volume fractions of the constituents. The
frequency equation is obtained using the Rayleigh–Ritz method based on the third-order shear
deformation plate theory to account for rotary inertia and transverse shear strains. Numerical
results are provided to show the effect of material compositions, plate geometry and temperature
fields on the vibration characteristics.
2. Formulation

Consider an FGM rectangular plate of length a, width b and thickness h with its coordinate
system (x, y, z) as shown in Fig. 1. The displacements of a plate in x, y and z directions are
denoted u, v, and w, respectively. A linear elastic material behavior is considered.

2.1. Functionally graded constitute law

An FGM plate is made from a mixture of ceramics and metals, and material composition
continuously varies such that the upper surface ðz ¼ h=2Þ of the plate is ceramic-rich whereas the
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Fig. 1. Configuration of functionally graded rectangular plate.
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lower surface ðz ¼ �h=2Þ is metal-rich. To obtain the effective material properties of the
functionally graded plate a simple rule of mixture is adopted, i.e. a power law of type

Pðz;TÞ ¼ ðPU � PLÞ
2z þ h

2h

� �p

þ PL; (1)

where P denotes a generic material property, PL and PU are the corresponding values at the lower
and upper surfaces of the plate and p is the volume fraction index that is the positive real value.
From this equation, it is notable that FGM material properties at z ¼ �h=2 are same as material
L. While FGM material properties at z ¼ h=2 are same as those of material U. The effective
material properties P are temperature dependent. A typical material property P, such as elastic
modulus E, the Poisson ratio n; mass density r and thermal expansion coefficient a can be
expressed as a function of temperature, see Ref. [17], as

P ¼ P0ðP�1T�1 þ 1 þ P1T þ P2T2 þ P3T3Þ; (2)

in which T ¼ T0 þ DTðzÞ and T0 ¼ 300K (room temperature), P0;P�1;P1;P2 and P3 are the
coefficients of temperature T (K) and are unique to the constituent materials. DT(z) is temperature
rise only through the thickness direction. But thermal conductivity k is temperature independent.

2.2. Governing equations

From the third-order shear deformation plate theory (TSDT) the displacement field for the
considered plate may be represented by

u ¼ u0 þ zfx � c1z3ðfx þ w0;xÞ;

v ¼ v0 þ zfy � c1z3ðfy þ w0;yÞ;

w ¼ w0; ð3Þ

where u0; v0; w0; fx and fy are function of x, y, t (time). u0; v0 and w0 denote the displacements of
a point on the middle surface and fx; fy are the rotations of a transverse normal about the y-, x-
axis, respectively. A comma represents the differentiation to the space.

The in-plane and transverse shear strains are defined as
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( )
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(5)

and

f �
ð0Þ
xx �ð0Þyy �ð0Þxy g ¼ f u0;x v0;y u0;y þ v0;x g; (6)

f �
ð1Þ
xx �ð1Þyy �ð1Þxy g ¼ ffx;x fy;y fx;y þ fy;x g; (7)
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f �
ð3Þ
xx �ð3Þyy �ð3Þxy g ¼ �c1ffx;x þ w0;xx fy;y þ w0;yy fx;y þ fy;x þ 2w0;xy g; (8)

f gð0Þxz gð0Þyz g ¼ fw0;x þ fx w0;y þ fy g; (9)

f gð2Þxz gð2Þ7yz g ¼ �c2fw0;x þ fx w0;y þ fy g; (10)

where c2=3c1 and c1=4/(3h2).
By setting c1 ¼ gyz ¼ gxz ¼ 0 and replacing fx; fy by w;x; w;y we recover the displacement field

of the classical plate theory (CPT). The displacement field of the first-order shear deformation
plate theory (FSDT) is recovered by setting c1 ¼ 0:

The stress resultants are related to the strains by the relations
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fAij ; Bij ; Dij ; Eij ; Fij; Hij g ¼

Z h=2

�h=2
Qijð1; z; z

2; z3; z4; z6Þdz ði; j ¼ 1; 2; 6Þ; (14)

fAij ; Dij; Fij g ¼

Z h=2

�h=2
Qijð1; z

2; z4Þdz ði; j ¼ 4; 5Þ: (15)

For FSDT Aijði; j ¼ 4; 5Þ must be modified by multiplying shear correction factor Kð¼ 5=6Þ:
The reduced stiffness coefficients Qij are functions of z and temperature T as follows:

Q11 ¼ Q22 ¼
Eðz;TÞ

1� n2ðz;TÞ
; Q12 ¼

nðz;TÞEðz;TÞ

1� n2ðz;TÞ
; Q44 ¼ Q55 ¼ Q66 ¼

Eðz;TÞ

2½1þ nðz;TÞ	
: (16)

The constituent relation of the plates is
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2.3. Thermal analysis

Let us now consider the influence of a temperature filed on the behavior of the FGM.
The temperature variation is assumed to occur in the thickness direction only and
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one-dimensional temperature field is assumed to be constant in the plane of the plate. In this
paper two types of thermal boundary condition are applied: thermal condition-I and thermal
condition-II.

In thermal condition-I it is assumed that one value of the temperature is imposed on the
upper surface and the other value on the lower surface. In this case, the temperature distri-
bution along the thickness can be obtained by solving a steady-state heat transfer equation
through the thickness of the plate. The equation for the temperature through the thickness is
given by

�
d

dz
kðzÞ

dT

dz

� �
¼ 0; (18)

where the thermal conductivity kðzÞ is assumed to be independent to the temperature. This
equation is solved by imposing boundary condition of T ¼ T0 þ DTU at z ¼ h=2 and T ¼

T0 þ DTL at z ¼ �h=2: The solution of this equation is

TðzÞ ¼ T0 þ DTðzÞ: (19)

For the isotropic material plate, the temperature rise through the thickness is

DTðzÞ ¼
DTU þ DTL

2
þ

DTU � DTL

h
z (20)

and for an FGM plate,

DTðzÞ ¼ DTL þ
DTU � DTLR h=2
�h=2ðdz=kðzÞÞ

Z z

�h=2

dz

kðzÞ
: (21)

In thermal condition-II it is assumed that the lower surface was held at a prescribed
temperature TL ¼ T0 þ DTL and the heat flow from the upper surface to the lower one is
assumed to be q (W/m2). The heat transfer rate per unit area (heat flux) q is proportional to the
normal temperature rise

q ¼ �kðzÞ
dTðzÞ

dz
: (22)

Solving this equation, we have the same temperature equation expressed in Eq. (19). For an
isotropic material plate with constant thermal conductivity, the temperature rise through the
thickness is

DTðzÞ ¼ DTL þ
q

k

h

2
þ

q

k
z

� �
: (23)

For an FGM plate with the thermal conductivity varying through the thickness, the temperature
rise through the thickness is

DTðzÞ ¼ DTL þ q

Z
1

kðzÞ
dz: (24)
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Suppose the plate is initially stress free at temperature T0: The plate is initially stressed by the
temperature rise. The initial stresses due to temperature rise DT(z) are defined by
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" #
DTðzÞ: (25)

2.4. Energy and frequency equation

The total strain energy of the initially stressed plate is given by

U ¼ Up þ UT ; (26)

where Up is the strain energy due to vibratory stresses and UT is the strain energy from the initial
stresses due to temperature rise. The strain energy Up and UT are given by

Up ¼
1

2

Z
V

½sxx�xx þ syy�yy þ sxy�xy þ syz�yz þ sxz�xz	dV ; (27)

UT ¼
1

2

Z
V

½sT
xxdxx þ 2sT

xydxy þ sT
yydyy	dV ; (28)

dij ¼ u;iu;j þ v;iv;j þ w;iw;j ði; j ¼ x; yÞ: (29)

The kinetic energy of the plate are given by

Tp ¼
1

2

Z
V

rðz;TÞ½ _u2 þ _v2 þ _w2	dV ; (30)

where a dot means the differentiation to the time.
The admissible displacement functions for the freely vibrating rectangular plate with any

boundary conditions can be written as

u0ðx; y; tÞ ¼
XM

m¼1

XN

n¼1

FmðxÞcnðyÞUmn cos omnt;

v0ðx; y; tÞ ¼
XM

m¼1

XN

n¼1

cmðxÞFnðyÞVmn cos omnt;

w0ðx; y; tÞ ¼
XM

m¼1

XN

n¼1

cmðxÞcnðyÞW mn cos omnt; (31)

fxðx; y; tÞ ¼
XM

m¼1

XN

n¼1

FmðxÞcxnðyÞX mn cos omnt;

fyðx; y; tÞ ¼
XM

m¼1

XN

n¼1

cmðxÞFnðyÞY mn cos omnt;
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where Umn;Vmn;W mn;X mn and Y mn are unknown coefficients, m and n are the half-wavenumber
for x-, y-direction, and omn is the angular natural frequency for (m, n) vibration mode. FiðX Þ and
ciðX Þ are the modal shape functions satisfying a boundary condition. The plates under
consideration are clamped on all edges. The associated boundary conditions are

u0 ¼ v0 ¼ w0 ¼ w0;x ¼ fx ¼ fy ¼ 0 at x edges; (32a)

u0 ¼ v0 ¼ w0 ¼ w0;y ¼ fx ¼ fy ¼ 0 at y edges: (32b)

For the plate clamped at x ¼ 0 and a, the modal functions cmðxÞ and FmðxÞ using beam
function can be expressed in a general form as

cmðxÞ ¼ cosh
lmx

a
� cos

lmx

a

� �
� si sinh

lmx

a
� sin

lmx

a

� �
; FmðxÞ ¼

cmðxÞ

lm=a
; (33)

where the coefficient sm is determined from the boundary condition and lm does not need an
integer as number depending on the wavenumber. The modal functions cnðyÞ and FnðyÞ have the
same form of cmðxÞ and FmðxÞ:
Table 1

Temperature-dependent coefficients of elastic modulus E (GPa), Poisson’s ratio n; mass density r (kg/m3), thermal

expansion coefficient a (1/K) and thermal conductivity k (W/mK) for ceramics and metals (from Refs. [14,18])

Material P�1 P0 P1 P2 P3

E SUS304 0 201.04 3.079
 10�4
�6.534
 10�7 0

Si3N4 0 348.43 �3.070
 10�4 2.160
 10�7
�8.946
 10�11

Ti–6Al–4V 0 122.70 �4.605
 10�4 0 0

ZrO2 0 132.20 �3.805
 10�4
�6.127
 10�8 0

n SUS304 0 0.3262 �2.002
 10�4 3.797
 10�7 0

Si3N4 0 0.2400 0 0 0

Ti–6Al–4V 0 0.2888 1.108
 10�4 0 0

ZrO2 0 0.3330 0 0 0

r SUS304 0 8166 0 0 0

Si3N4 0 2370 0 0 0

Ti–6Al–4V 0 4420 0 0 0

ZrO2 0 3657 0 0 0

a SUS304 0 12:330
 10�6 8.086
 10�6 0 0

Si3N4 0 5:8723
 10�6 9.095
 10�6 0 0

Ti–6Al–4V 0 7:4300
 10�6 7.483
 10�4
�3.621
 10�7 0

ZrO2 0 13.300
 10�6
�1.421
 10�3 9.549
 10�7 0

k SUS304 — — — — —

Si3N4 — — — — —

Ti–6Al–4V 0 6.10 0 0 0

ZrO2 0 1.78 0 0 0
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Substituting the displacement functions into each energy equation and then applying these
results to Rayleigh–Ritz procedure, the following frequency equation is obtained:

½½K	 � o2½M		fPg ¼ 0; (34)

where stiffness matrix [K] and mass matrix [M] are composed of ð5 
 5Þ sub-matrices and the
elements of these sub-matrices are given in the appendix. Each sub-matrix of [K] and [M] matrices
is of the order of ((M
N)
 (M
N)). Eq. (34) is a set of linear, homogeneous and simultaneous
algebraic equations. Solving this eigenvalue problem the natural frequency and its corresponding
mode shape are obtained.
3. Results and discussions

Some numerical examples are now demonstrated for the present theoretical method. We
consider that a FGM plate has the ceramic at the heated surface ðz ¼ h=2Þ and the metal at the
cooled surface ðz ¼ �h=2Þ; and their compositions vary continuously in the thickness direction of
the plate. The material properties are taken into consideration the temperature dependency for the
temperature range of 300KpTp1100K as given in Table 1 from Refs. [14,18]. Type-I FGM
plate, which is made of stainless steel (SUS304) on its lower surface and silicon nitride (Si3N4) on
its upper surface, is used to validate the present method. The effect of the FGM configuration is
studied by studying the frequencies of Type-II FGM plate, which is made of titanium alloy
(Ti–6Al–4V) on its lower surface and zirconium oxide (ZrO2) on its upper surface.

To validate the present method for FGM plates, the results for Type-I FGM square plates
ða ¼ 0:2mÞ are compared with those of Yang and Shen [14], see Table 2. Also, by varying the
Table 2

Convergence and comparison study of frequency parameter on ¼ ob2=p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IS=DS

p
for Type-I FGM square plates

subjected to uniform temperature rise (p ¼ 2:0; a ¼ 0:2m; a=h ¼ 10)

DT ðKÞ Source Mode sequence

1 2 3 4 5 6 7 8

0 M 
 N ¼ 5
 5 4.1334 8.0241 8.0241 11.3513 13.2169 13.3079 16.1390 16.1390

M 
 N ¼ 8
 8 4.1230 7.9828 7.9828 11.2457 13.1495 13.2478 16.0059 16.0059

M 
 N ¼ 10
 10 4.1165 7.9696 7.9696 11.2198 13.1060 13.2089 15.9471 15.9471

Ref. [14] 4.1062 7.8902 7.8902 11.1834 12.5881 13.1867 15.4530 16.0017

300 M 
 N ¼ 5
 5 3.6741 7.3587 7.3587 10.5240 12.3014 12.3964 15.0892 15.0892

M 
 N ¼ 8
 8 3.6650 7.3217 7.3217 10.4262 12.2387 12.3410 14.9642 14.9642

M 
 N ¼ 10
 10 3.6593 7.3098 7.3098 10.4021 12.1982 12.3052 14.9090 14.9090

Ref. [14] 3.6636 7.2544 7.2544 10.3924 11.7054 12.3175 14.4520 15.0019

500 M 
 N ¼ 5
 5 3.2280 6.7003 6.7003 9.6892 11.3668 11.4652 14.0034 14.0034

M 
 N ¼ 8
 8 3.2198 6.6669 6.6669 9.5986 11.3085 11.4142 13.8863 13.8863

M 
 N ¼ 10
 10 3.2147 6.6561 6.6561 9.5761 11.2708 11.3812 13.8346 13.8346

Ref. [14] 3.2357 6.6281 6.6281 9.5990 10.8285 11.4350 13.4412 13.9756
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series number of M and N, convergence study has been undertaken in this table for the first eight
natural frequency parameters o� ¼ oa2=p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IS=DS

p
to arrive at the choice of suitable series

numbers. DS and IS are chosen to be the values of D11 and I0 of a stainless steel plate of a=h ¼ 10
evaluated at room temperature T0: This plate is on the uniform temperature rise. It is observed
that the present method converges well enough to obtain results in good agreement with those of
Ref. [14] when MX8 and NX8: Thus, M 
 N ¼ 10
 10 has been used in all the following
computations.

In all the following computations, Type-II FGM plate, which is made of titanium alloy
(Ti–6Al–4V) on its lower surface and zirconium oxide (ZrO2) on its upper surface, is chosen.
Fig. 2 presents the variation of volume fraction for ceramic, thermal conductivity and temperature
field through the thickness of the FGM plate for two types of thermal condition. From Fig. 2(a),
the volume fraction of ceramic Vc increases from 0 at z ¼ �h=2 to 1 at z ¼ h=2: At z away from
z ¼ h=2; the rate of decrease of Vc for p41 is high compared to po1; and z closer to z ¼ h=2; the
rate of increase of Vc for p41 is much higher than for po1: The non-dimensional thermal
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conductivity k=kU in Fig. 2(b) decreases from kL=kU at z ¼ �h=2 to 1 at z ¼ h=2: At z away from
z ¼ h=2; the rate of increase of k=kU for p41 is high compared to po1; and z closer to z ¼ �h=2;
the rate of increase of k=kU for po1 is much higher than for p41: Fig. 2(c) shows the temperature
distribution of plates subjected to thermal condition-I, where the upper surface is held at TU ¼

800K and the lower surface is held at TL ¼ T0: For the isotropic plate subjected to this thermal
type, temperature distributions are same regardless of material types as indicated in Eq. (20). It is
seen that the temperature at any internal point through the thickness of the plate made of
isotropic material is always higher than that corresponding to FGM plates. The temperature
distribution may be almost same in case that p is close to 0 or infinite value. This is the reason that
FGM is mainly composed of one isotropic material if p is close to 0 or infinite. The temperature
distributions of plates subjected to thermal condition-II, where the lower surface is held at TL ¼

T0 and the heat flow from the upper surface to the lower one is assumed to be q ¼ 5
 104 W=m2;
indicate in Fig. 2(d). The metal plate with the relatively large thermal conductivity undergoes the
lowest temperature and the ceramic plate with the low thermal conductivity does the largest
temperature. For the FGM plates, the temperature rise become large as the volume fraction index
p decreases, i.e., the amount of the ceramic in FGM increases.
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Fig. 3. Variation of elastic modulus through the non-dimensional thickness for the Type-II FGM plate (a ¼ 0:2m;
a=h ¼ 10): (a) room temperature; (b) uniform temperature rise with DTL ¼ DTU ¼ 500K; (c) thermal condition-I with

DTL ¼ 0K; DTU ¼ 500K; (d) thermal condition-II with DTL ¼ 0K; q ¼ 5
 104 W=m2:
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Fig. 3 shows the variation of elastic modulus E of FGM plates with the volume fraction index,
p. Fig. 3(a) indicates elastic modulus of FGM plates on room temperature, Fig. 3(b) on uniform
temperature rise with DT ¼ 500K; Fig. 3(c) on thermal condition-I with DTL ¼ 0K; DTU ¼

500K; and Fig. 3(d) on thermal condition-II with DTL ¼ 0K; q ¼ 5
 104 W=m2: For the plate on
room temperature and uniform temperature environments, elastic modulus becomes large away
from the lower surface according to volume of ceramic. However, elastic modulus variations of
FGM plates on thermal condition-I and II are very different from those of above two cases as
shown in Figs. 3(c) and (d). In thermal condition-I elastic modulus increases first, and then
decreases when po1: And elastic modulus decreases when pX1: But elastic modulus decreases
first, then increases for the large p ¼ 10: For the FGM plate on thermal condition-II, elastic
modulus at upper surface increases as volume fraction increases because the temperature at this
surface due to heat flux becomes low as the volume fraction index increases as indicated in
Fig. 2(d).

Comparison has been made between CPT, FSDT and TSDT in Table 3. The used Diff. (%) in
the table is the percentage differences of CPT and FSDT results with respect to TSDT results.
Compared with CPT, FSDT and TSDT results, the differences increase as a/h is decreased. This is
Table 3

Comparison study of frequency parameter o� ¼ ob2=p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IS=DS

p
for Type-II FGM square plates between CPT, FSDT

and TSDT (p ¼ 2:0; a ¼ 0:2m; DT ¼ 0K)

a=h Source Mode sequence

1 2 3 4 5 6 7 8

5 CPT 7.4122 15.1165 15.1165 20.8333 22.2877 23.6705 23.6705 24.0072

Diff., % 33.4858 50.4234 50.4234 53.6515 45.9393 53.3123 29.4545 31.2959

FSDT 5.5166 9.9197 9.9197 13.2982 14.8992 15.0658 17.7372 17.7372

Diff., % �0.6519 �1.2896 �1.2896 �1.9220 �2.4404 �2.4198 �2.9948 �2.9948

TSDT 5.5528 10.0493 10.0493 13.5588 15.2719 15.4394 18.2848 18.2848

10 CPT 3.7063 7.5591 7.5591 11.1462 13.5517 13.6159 16.9956 16.9957

Diff., % 9.9760 15.8430 15.8430 21.3218 26.2491 25.8715 30.1148 30.1156

FSDT 3.3663 6.5086 6.5086 9.1503 10.6789 10.7625 12.9769 12.9769

Diff., % �0.1128 �0.2559 �0.2559 �0.4027 �0.5143 �0.5066 �0.6515 �0.6515

TSDT 3.3701 6.5253 6.5253 9.1873 10.7341 10.8173 13.0620 13.0620

20 CPT 1.8531 3.7796 3.7796 5.5733 6.7762 6.8083 8.4983 8.4984

Diff., % 2.6591 4.3368 4.3368 6.0188 7.4803 7.3763 8.8033 8.8046

FSDT 1.8047 3.6206 3.6206 5.2524 6.2977 6.3338 7.7998 7.7998

Diff., % �0.0222 �0.0525 �0.0525 �0.0856 �0.1094 �0.1073 �0.1396 �0.1396

TSDT 1.8051 3.6225 3.6225 5.2569 6.3046 6.3406 7.8107 7.8107

100 CPT 0.3706 0.7559 0.7559 1.1147 1.3553 1.3617 1.6997 1.6997

Diff., % 0.1081 0.1723 0.1723 0.2608 0.3183 0.3168 0.3780 0.3780

FSDT 0.3702 0.7545 0.7545 1.118 1.3509 1.3574 1.6932 1.6932

Diff., % 0.0000 �0.0133 �0.0133 0.0000 �0.0074 0.0000 �0.0059 �0.0059

TSDT 0.3702 0.7546 0.7546 1.1118 1.3510 1.3574 1.6933 1.6933
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due to the fact that the transverse shear and rotary inertia will have more effect on a thicker plate.
For the thick plates considered in this case, there is a significant difference between the results
predicted by FSDT and TSDT; FSDT slightly overpredicts frequencies. The difference between
the results obtained from FSDT and TSDT is insignificant for a/h ratios greater than 5.

In Table 4, we examine the vibration characteristics of the isotropic and FGM square plates in
three thermal environments, i.e., uniform temperature rise of DT ¼ 500K; thermal condition-I
with DTL ¼ 0; DTU ¼ 500K and thermal condition-II with DTL ¼ 0; q ¼ 5
 104 W=m2: In
general, frequencies are the highest for the ceramic plate and lowest for the metallic plate. The
frequencies increase as the volume fraction index p decrease. It is evident that the stiffness is a
maximum for the ceramic plate, is a minimum for the metallic plate, and increases as the volume
fraction index p decrease. On thermal condition-II, however, the frequencies of FGM plate with
p ¼ 0:2 are the highest. This is the reason that temperature at upper surface of this plate is much
lower than that of ceramic plate due to heat flux as indicated in Fig. 2(d).

To show the effect of volume fraction index p on the fundamental frequency, the frequency
ratio f =f m for the square plate of a=h ¼ 5 are plotted to material constitutions in Fig. 4, where f m

and f are the fundamental frequency of metallic plate and other plates in each temperature
Table 4

Frequency parameter o� ¼ ob2=p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IS=DS

p
for Type-II FGM square plates with various thermal conditions

(a ¼ 0:2m; a=h ¼ 10)

Material composition Mode sequence

1 2 3 4 5 6 7 8

(a) Uniform temperature rise with

DTL ¼ DTU ¼ 500K

ZrO2 3.0273 5.9890 5.9890 8.4936 9.9479 10.0318 12.1416 12.1416

FGM, p ¼ 0:2 2.9224 5.7980 5.7980 8.2318 9.6467 9.7286 11.7797 11.7797

FGM, p ¼ 1:0 2.7433 5.4700 5.4700 7.7800 9.1236 9.2022 11.1492 11.1492

FGM, p ¼ 5:0 2.5931 5.1934 5.1934 7.3965 8.6769 8.7527 10.6091 10.6091

Ti–6Al–4V 2.4928 5.0132 5.0132 7.1522 8.3985 8.4723 10.2762 10.2762

(b) Thermal condition-I with

DTL ¼ 0K; DTU ¼ 500K

ZrO2 3.3704 6.5920 6.5920 9.3125 10.8924 10.9807 13.2730 13.2730

FGM, p ¼ 0:2 3.3040 6.4613 6.4613 9.1303 10.6833 10.7692 13.0201 13.0201

FGM, p ¼ 1:0 3.1584 6.1792 6.1792 8.7349 10.2239 10.3058 12.4627 12.4627

FGM, p ¼ 5:0 2.9970 5.8742 5.8742 8.3078 9.7238 9.8023 11.8553 11.8553

Ti–6Al–4V 2.8498 5.6098 5.6098 7.9475 9.3104 9.3865 11.3598 11.3598

(c) Thermal condition-II with

DTL ¼ 0K; q ¼ 5
 104 W=m2

ZrO2 3.3242 6.5103 6.5103 9.2019 10.7654 10.8531 13.1211 13.1211

FGM, p ¼ 0:2 3.3554 6.5516 6.5516 9.2522 10.8228 10.9094 13.1865 13.1865

FGM, p ¼ 1:0 3.2829 6.3949 6.3949 9.0243 10.5543 10.6377 12.8558 12.8558

FGM, p ¼ 5:0 3.1811 6.1887 6.1887 8.7288 10.2053 10.2856 12.4280 12.4280

Ti–6Al–4V 3.0895 6.0148 6.0148 8.4881 9.9289 10.0068 12.0946 12.0946
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Fig. 4. Effect of volume fraction index p on the fundamental frequency of the Type-II FGM square plates (a ¼ 0:2m;
a=h ¼ 5; a=b ¼ 1): (a) uniform temperature rise; (b) thermal condition-I with DTL ¼ 0K; (c) thermal condition-II with

DTL ¼ 0K:
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environment. Generally the effect of volume fraction index on high temperature environment is
higher than on low temperature environment. But the effect of p in uniform temperature rise of
DT ¼ 500K is higher than that in DT ¼ 800K because elastic modulus of metal linearly decreases
and that of ceramic quadratically does with temperature. The effect of temperature for the
ceramic-rich plate is higher than for the metal-rich plate on the uniform temperature rise. The
effect of temperature on thermal condition-I is highest for the FGM plate of p ¼ 1 and this effect
decreases as p is away from 1. The effect of heat flux is very large for the ceramic-rich plate
because the temperature at upper surface due to heat flux is very high compared to other material
compositions. The effect of heat flux is very small for the metal-rich plate subjected to the lowest
temperature field due to heat flux.

Fig. 5 gives to investigate the effect of temperature and heat flux on the fundamental frequency.
Fig. 5(a) shows the frequency ratio f =f T0 for the square plates of a=h ¼ 5 and 10 on the uniform
temperature rise, where f T0 and f are fundamental frequencies of plates on room temperature and
other temperatures. The effect of temperature for the plate of a=h ¼ 10 is higher than that of
a=h ¼ 5 because stiffness reduction by temperature rise for a=h ¼ 5 is smaller than that for
a=h ¼ 10: The effect of temperature becomes high as the plate becomes metal-rich. Therefore the
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effect is the highest for metallic plate and the lowest for ceramic plate. Fig. 5(b) and (c) present the
effect of temperature and heat flux on the fundamental frequencies on thermal condition-I and II.
On thermal condition-I, the effect of temperature is the highest for the metallic plate and the
lowest for the FGM plate with p ¼ 1: This effect for metallic plate is the higher than for the
ceramic plate. This effect for isotropic plates is always higher than for FGM plates because the
temperature through the thickness of FGM plate is higher for isotropic plates than for the FGM
plates as indicated in Fig. 2(c). For FGM plates this effect becomes large as FGM plates becomes
metal-rich or ceramic-rich. The effect for the metal-rich FGM plate is higher than that for the
ceramic-rich FGM plates. The effect of heat flux becomes high as an FGM plate becomes
ceramic-rich because the temperature distribution due to heat flux becomes high as the plate
becomes ceramic-rich as shown in Fig. 2(d).
4. Conclusion

The temperature dependent vibration characteristics of the functionally graded rectangular
plates made up of metal and ceramic are studied. The frequency equation is obtained using the
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Rayleigh–Ritz procedure based on the third-order shear deformation plate theory. In theoretical
formulation the initial stresses due to temperature rise are considered. The temperature is assumed
to be constant in the plane of the plate. The variation of temperature is assumed to occur in the
thickness direction only. Material properties are assumed to be temperature dependent, and vary
continuously through the thickness according to a power law distribution in terms of the volume
fractions of the constituents. The numerical results confirm that the vibration characteristics are
significantly influenced by: material compositions, plate geometry and temperature rise. The
present theoretical results are verified by comparing with those in literature.
Appendix

The stiffness and mass matrix [K], [M] in Eq. (34) are given as

½K	 ¼

½K11	 ½K12	 ½K13	 ½K14	 ½K15	

½K12	
T ½K22	 ½K23	 ½K24	 ½K25	

½K13	
T ½K23	

T ½K33	 ½K34	 ½K35	

½K14	
T ½K24	

T ½K34	
T ½K44	 ½K45	

½K15	
T ½K25	

T ½K35	
T ½K45	

T ½K55	

2
666666664

3
777777775
;

½M	 ¼

½M11	 0 ½M13	 ½M14	 0

0 ½M22	 ½M23	 0 ½M25	

½M13	
T ½M23	

T ½M33	 ½M34	 ½M35	

½M14	
T 0 ½M34	

T ½M44	 0

0 ½M25	
T ½M35	

T 0 ½M55	

2
666666664

3
777777775
:

The elements of the sub-matrices of the stiffness matrix [K] and the mass matrix [M] are given as

½K11	mm̄nn̄ ¼
1

amam̄

½ðA11 � AT
11ÞI

2200
mm̄nn̄ þ ðA66 � AT

22ÞI
1111
mm̄nn̄	;

½K12	mm̄nn̄ ¼
1

am̄bn

ðA12I0220
mm̄nn̄ þ A66I1111

mm̄nn̄Þ;

½K13	mm̄nn̄ ¼ �
c1

am̄

½ðE11 � ET
11ÞI

2200
mm̄nn̄ þ ð2E66 � ET

22ÞI
1111
mm̄nn̄ þ E12I0220

mm̄nn̄	;

½K14	mm̄nn̄ ¼
1

amam̄

½ðB11 � c1E11 � BT
11 þ c1ET

11ÞI
2200
mm̄nn̄ þ ðB66 � c1E66 � BT

22 þ c1ET
22ÞI

1111
mm̄nn̄	;

½K15	mm̄nn̄ ¼
1

am̄bn

½ðB12 � c1E12ÞI
0220
mm̄nn̄ þ ðB66 � c1E66ÞI

1111
mm̄nn̄	;
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½K22	mm̄nn̄ ¼
1

bnbn̄

½ðA22 � AT
22ÞI

0022
mm̄nn̄ þ ðA66 � AT

11ÞI
1111
mm̄nn̄	;

½K23	mm̄nn̄ ¼ �c1½E12I2002
mm̄nn̄ þ ð2E66 � ET

11ÞI
1111
mm̄nn̄ þ ðE22 � ET

22ÞI
0022
mm̄nn̄	;

½K24	mm̄nn̄ ¼ �
1

ambn̄

½ðB12 � c1E12ÞI
2002
mm̄nn̄ þ ðB66 � c1E66ÞI

1111
mm̄nn̄	;

½K25	mm̄nn̄ ¼
1

bnbn̄

½ðB22 � c1E22 � BT
22 þ c1ET

22ÞI
0022
mm̄nn̄ þ ðB66 � c1E66 � BT

11 þ c1ET
11ÞI

1111
mm̄nn̄	;

½K33	mm̄nn̄ ¼ ðA55 � 6c1D55 þ 9c2
1F55 � AT

11ÞI
1100
mm̄nn̄ þ ðA44 � 6c1D44 þ 9c2

1F44 � AT
22ÞI

0011
mm̄nn̄

þ c2
1ðH11 � HT

11ÞI
2200
mm̄nn̄ þ c2

1H12ðI
0220
mm̄nn̄ þ I2002

mm̄nn̄Þ þ c2
1ðH22 � HT

22ÞI
0022
mm̄nn̄

þ c2
1ð4H66 � HT

11 � HT
22ÞI

1111
mm̄nn̄;

½K34	mm̄nn̄ ¼
1

am

½ðA55 � 6c1D55 þ 9c2
1F55ÞI

1100
mm̄nn̄ þ ðc2

1H11 � c1F11 � c2
1HT

11 þ c1FT
11ÞI

2200
mm̄nn̄

þ ðc2
1H12 � c1F12ÞI

2002
mm̄nn̄ þ ð2c2

1H66 � 2c1F66 � c2
1HT

22 þ c1FT
22ÞI

1111
mm̄nn̄	;

½K35	mm̄nn̄ ¼
1

bn

½ðA44 � 6c1D44 þ 9c2
1F44ÞI

0011
mm̄nn̄ þ ðc2

1H22 � c1F22 � c2
1HT

22 þ c1FT
22ÞI

0022
mm̄nn̄

þ ðc2
1H12 � c1F12ÞI

0220
mm̄nn̄ þ ð2c2

1H66 � 2c1F66 � c2
1HT

11 þ c1FT
11ÞI

1111
mm̄nn̄	;

½K44	mm̄nn̄ ¼
1

amam̄

½ðD11 � 2c1F11 þ c2
1H11 � DT

11 � c2
1HT

11 þ 2c1FT
11ÞI

2200
mm̄nn̄

þ ðD66 � 2c1F66 þ c2
1H66 � DT

22 � c2
1HT

22 þ 2c1FT
22ÞI

1111
mm̄nn̄

þ ðA55 � 6c1D55 þ 9c2
1F55ÞI

1100
mm̄nn̄	;

½K45	mm̄nn̄ ¼
1

am̄bn

½ðD12 � 2c1F12 þ c2
1H12ÞI

0220
mm̄nn̄ þ ðD66 � 2c1F66 þ c2

1H66ÞI
1111
mm̄nn̄	;

½K55	mm̄nn̄ ¼
1

bnbn̄

½ðD22 � 2c1F22 þ c2
1H22 � DT

22 � c2
1HT

22 þ 2c1FT
22ÞI

0022
mm̄nn̄

þ ðD66 � 2c1F66 þ c2
1H66 � DT

11 � c2
1HT

11 þ 2c1FT
11ÞI

1111
mm̄nn̄

þ ðA44 � 6c1D44 þ 9c2
1F44ÞI

0011
mm̄nn̄	;

½M11	mm̄nn̄ ¼
I0I1100

mm̄nn̄

amam̄

; ½M13	mm̄nn̄ ¼ �
c1I3I1100

mm̄nn̄

am̄

; ½M14	mm̄nn̄ ¼
ðI1 � c1I3ÞI

1100
mm̄nn̄

amam̄

;

½M22	mm̄nn̄ ¼
I0I0011

mm̄nn̄

bnbn̄

; ½M23	mm̄nn̄ ¼ �
c1I3I0011

mm̄nn̄

bn̄

; ½M25	mm̄nn̄ ¼
ðI1 � c1I3ÞI

0011
mm̄nn̄

bnbn̄

;
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½M33	mm̄nn̄ ¼ I1I0000
mm̄nn̄ � c2

1I6ðI
1100
mm̄nn̄ þ I0011

mm̄nn̄Þ; ½M34	mm̄nn̄ ¼
c1ðc1I6 � I4ÞI

1100
mm̄nn̄

am

;

½M35	mm̄nn̄ ¼
c1ðc1I6 � I4ÞI

0011
mm̄nn̄

bn

;

½M44	mm̄nn̄ ¼
ðI2 � 2c1I4 þ c2

1I6ÞI
1100
mm̄nn̄

amam̄

; ½M55	mm̄nn̄ ¼
ðI2 � 2c1I4 þ c2

1I6ÞI
0011
mm̄nn̄

bnbn̄

;

where

ai ¼
li

a
; bi ¼

li

b
; I

pqrs
mm̄nn̄ ¼

Z L

0

qðpÞcm

qxðpÞ

qðqÞcm̄

qxðqÞ
dx

Z b

0

qðrÞcn

qyðrÞ

qðsÞcn̄

qyðsÞ
dy;

fAT
ii ;B

T
ii ;D

T
ii ;E

T
ii ;F

T
ii ;H

T
ii g ¼

Z h=2

�h=2
sT

i ð1; z; z
2; z3; z4; z6Þdz ði ¼ 1; 2;x; y for sT

i Þ;

fI0; I1; I2; I3; I4; I6g ¼

Z h=2

�h=2
rðzÞð1; z; z2; z3; z4; z6Þdz ði; j ¼ 1; 2; 6Þ:
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